HJK CONSULTING ENGINEERS **Project Management – Technology – Operating – Consulting Excellence** ENERGY SAVING POTENTIALS Typical Energy Balance Electric Arc Furnace ENERGY SAVING POTENTIALS Typical Energy Balance Billet/Bloom/Beam Blank CCM ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Typical Energy Balance Reheating Furnace ENERGY SAVING POTENTIALS - Technologies & Measures (samples), to adjust according to individual plant findings | Technology or
Measure | Potential Energy Saving | Increase in productivity | Potential CO ₂ emission reduction | Cost (estimate) | |--------------------------------|--|--|--|--------------------------------| | EAF controls | Electric energy consumption ≤ 14%Natural gas consumption ≤ 6% | | ■ ≤ 34 Kton Co ₂ p.a. | | | Improved process control | ■ Electricity savings ≤ 30 kWh/t-steel | Increase ≤ 12%Electrode consumption - 25% | ■ ≤ 18 kg C ₂ /t-steel | | | Oxyfuel burner / lancing | ■ Energy savings 2-3 kWh/t-steel per minute heating time reduction | | ¹ ≤ 24 kg ¹)₂/t-steel | ■ Retrofit CAPEX
≤ 5 USD/t | | Hot DRI/HBI charging | Melting energy savings ≤ 150
kWh/t-steel (DRI/HBI ≤ 60, °C) | 5 | | | | Foamy slag practices | ■ Net energy saling ≤ 8 kWh, i-steel | | ■≤ 11 kg Co ₂ /t-steel | ■ Retrofit CAPEX
≤ 16 USD/t | | Bottom stirrii , gas in action | ■ Electricity savings fro 12 – 24 kV h/t ster! | | ■ ≤ 12 kg Co ₂ /t-steel | ■ Retrofit CAPEX
≤ 1 USD/t | | CONS' EEL | ■ E. stricity savings ≤ 60 kWh/t-steel | Increase ≤ 33% | ■ ≤ 36 kg Co ₂ /t-steel | ■ Retrofit CAPEX
≤ 8 USD/t | | Sha t Jurnace | Electricity savings ≤ 280 kWh/t-
steel | Increase ≤ 35%Electrode consumption - ≤ 30% | | ■ Retrofit CAPEX
≤ 10 USD/t | ### WHP (Waste Heat to Power) ZERO-EMISSION ELECTRICITY | Temperature Classification | Waste Heat Source | Characteristics | Commercial Waste Heat to Power Technologies | |---|---|---|--| | HIGH
>650 °C / 1200 °F | ➤ Furnaces ✓ Steel electric arc ✓ Steel heating ✓ Basic oxygen ✓ Aluminium reverberators ✓ Copper reverberators ✓ Nickel refining ✓ Copper refining ✓ Glass melting ➢ Iron cupolas ➢ Coke ovens ➢ Fume incinerators ➢ Hydrogen plants | High quality heat High heat transfer High power-generation efficiencies Chemical and mechanical contaminants | Waste heat boilers and steam turbines | | MEDIUM
350 - 650 °C / 500 - 1200 °F | ▶ Prime mover exhaust streams ✓ Gas turbine ✓ Reciprocating engine ▶ Heat-treating furnaces ▶ Ovens ✓ Drying ✓ Baking ✓ Curing ▶ Cement kilns | Medium power-generation efficiencies Chemical and mechanical contaminants (some streams such as cement kilns) | Waste heat boilers and steam turbines (>260 °C / 500 °F) → Organic Rankine cycle (<430 °C / 800 °F) → Kalina cycle (<540 °C / 1,000 °F) | | LOW
<260 °C / 500 °F | Boilers Ethylene furnaces Steam condensate Cooling Water Furnace doors Annealing furnaces Air compressors IC engines Refrigeration condensers Low-temperature ovens Hot process liquids or solids | Energy contained in numerous small sources Low power-generation efficiencies Recovery of combustion streams limited due to acid concentration if temperatures reduced below 120 °C / 250 °F | > Organic Rankine cycle (>150 °C / 300 °F gaseous streams, 80 °C / 175 °F liquid streams) > Kalina cycle (95 °C / 200 °F) | WTE (Waste to Energy) Application Fields | Field of Application | | Temperature Range | | | |---------------------------|------------|------------------------|---------------------------|--------------------------| | | | Low (>100 °C / 212 °F) | Medium (<200 °C / 392 °F) | High (>2100 °C / 392 °F) | | Geothermal | | 01- | 20 MW | > | | Waste Heat | WASTE HEAT | | 0.2 – 20 MW | | | Biomass & Waste to Energy | BIOMASS | | | 0.2 – 15 MW | | CSP Solar | * | | | 0.2 – 15 MW | ENERGY SAVING POTENTIALS - Technologies & Measures (samples), SAMPLE DISTRICT HEATING & COOLING SYSTEM generally in the range **200 kW – 10 MW electrical output** e.g. recovery at Elbe – Feralpi ≤720 kWh/tls / pay-back 5-6 years Average consumption EAF: - 360 400 kWh/tls (hot DRI) - <400 550 kWh/tls (cold DRI, scrap) ENERGY SAVING POTENTIALS - Technologies & Measures (samples), SAMPLE STEAM GENERATION (simplified scheme) ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Iron & Steel Production life cycle (simplified) ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Iron & Steel Production life cycle (simplified) Possibilities of by-products usage in the metals industry (different kinds of raw material), - ✓ road construction and building industries (ballast/fill materials, steel slag asphalt), - ✓ binder material and production of cement, agriculture and animal husbandry (soil improvers and horse riding surfaces), - ✓ electronics industry (ferrites), - ✓ chemical industries (different kinds of raw materials and fertilizer products); | Enterprise | Investment | Savings | Source | |--|--|--|--------------------| | Tenaris Dalmine Plant | ■ EUR 3.8 mill. (2007-2008) — e.g. high efficiency & frequency controlled motors, energy waste, heat recovery, CHP power plant, etc. | 14% reduction in electricity 6% reduction in natural gas (JUN08-JUL09 vs JUN05-JUL06) | www.worldsteel.org | | Essar Hazira Plant | Investment in HBI Cooling
system | Water consumption reduction 0.68
m³/ton MAY08 compared to 0.92
³/ton FEB08, savings: 250,000 USD | www.worldsteel.org | | HADEED | ■ Upgrading natural gas quality | Specific consumption savings: 0.97 MBTU/MT equivalent to 8.48% of original gas consumption | www.worldsteel.org | | ThyssenKrupp German HRM | Advanced burner technology,
secondary de-dusting systems | ■ Specific dust & NOx emission reduction from 1985 to 2005 (2 kg/ton → 0.5 kg/ton crude steel produced) | www.worldsteel.org | | Usage of slag in different industries like road making, cement, etc. | | Production cost of 01 ton Portland
Cement generates about 1.2 ton
CO₂, usage of BF slag containing 50
wt% GGBS generates 0.54 ton CO₂ Market price BF granulated slag: 75-79USD/ton; 65 EUR/m³, BOF 38-40
EUR/ton | www.euroslag.com | ENERGY SAVING POTENTIALS - Technologies & Measures, ISO 50001 Energy Management System Model (Plan – Do – Check – Act) ENERGY SAVING POTENTIALS - Technologies & Measures, Basic program energy saving audit & implementation In cooperation with University of Natural Resources and Life Sciences, Vienna **ENERGY SAVING POTENTIALS - Technologies & Measures** # Independent, reliable & trustable consultancy service for ### **YOUR** # long-term success