

# HJK CONSULTING ENGINEERS

**Project Management – Technology – Operating – Consulting Excellence** 







ENERGY SAVING POTENTIALS
Typical Energy Balance Electric Arc Furnace









ENERGY SAVING POTENTIALS
Typical Energy Balance Billet/Bloom/Beam Blank CCM









ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Typical Energy Balance Reheating Furnace











ENERGY SAVING POTENTIALS - Technologies & Measures (samples), to adjust according to individual plant findings

| Technology or<br>Measure       | Potential Energy Saving                                                                  | Increase in productivity                                               | Potential CO <sub>2</sub> emission reduction | Cost (estimate)                |
|--------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--------------------------------|
| EAF controls                   | <ul><li>Electric energy consumption ≤ 14%</li><li>Natural gas consumption ≤ 6%</li></ul> |                                                                        | ■ ≤ 34 Kton Co <sub>2</sub> p.a.             |                                |
| Improved process control       | ■ Electricity savings ≤ 30 kWh/t-steel                                                   | <ul><li>Increase ≤ 12%</li><li>Electrode consumption - 25%</li></ul>   | ■ ≤ 18 kg C <sub>2</sub> /t-steel            |                                |
| Oxyfuel burner / lancing       | ■ Energy savings 2-3 kWh/t-steel per minute heating time reduction                       |                                                                        | ¹ ≤ 24 kg ¹ )₂/t-steel                       | ■ Retrofit CAPEX<br>≤ 5 USD/t  |
| Hot DRI/HBI charging           | <ul> <li>Melting energy savings ≤ 150<br/>kWh/t-steel (DRI/HBI ≤ 60, °C)</li> </ul>      | 5                                                                      |                                              |                                |
| Foamy slag practices           | ■ Net energy saling ≤ 8 kWh, i-steel                                                     |                                                                        | ■≤ 11 kg Co <sub>2</sub> /t-steel            | ■ Retrofit CAPEX<br>≤ 16 USD/t |
| Bottom stirrii , gas in action | ■ Electricity savings fro 12 – 24 kV h/t ster!                                           |                                                                        | ■ ≤ 12 kg Co <sub>2</sub> /t-steel           | ■ Retrofit CAPEX<br>≤ 1 USD/t  |
| CONS' EEL                      | ■ E. stricity savings ≤ 60 kWh/t-steel                                                   | Increase ≤ 33%                                                         | ■ ≤ 36 kg Co <sub>2</sub> /t-steel           | ■ Retrofit CAPEX<br>≤ 8 USD/t  |
| Sha t Jurnace                  | Electricity savings ≤ 280 kWh/t-<br>steel                                                | <ul><li>Increase ≤ 35%</li><li>Electrode consumption - ≤ 30%</li></ul> |                                              | ■ Retrofit CAPEX<br>≤ 10 USD/t |





### WHP (Waste Heat to Power) ZERO-EMISSION ELECTRICITY



| Temperature Classification                    | Waste Heat Source                                                                                                                                                                                                                                                                                                                                                     | Characteristics                                                                                                                                                                                                                   | Commercial Waste Heat to Power Technologies                                                                                                                                            |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HIGH<br>>650 °C / 1200 °F                     | <ul> <li>➤ Furnaces</li> <li>✓ Steel electric arc</li> <li>✓ Steel heating</li> <li>✓ Basic oxygen</li> <li>✓ Aluminium reverberators</li> <li>✓ Copper reverberators</li> <li>✓ Nickel refining</li> <li>✓ Copper refining</li> <li>✓ Glass melting</li> <li>➢ Iron cupolas</li> <li>➢ Coke ovens</li> <li>➢ Fume incinerators</li> <li>➢ Hydrogen plants</li> </ul> | <ul> <li>High quality heat</li> <li>High heat transfer</li> <li>High power-generation efficiencies</li> <li>Chemical and mechanical contaminants</li> </ul>                                                                       | Waste heat boilers and steam turbines                                                                                                                                                  |
| <b>MEDIUM</b><br>350 - 650 °C / 500 - 1200 °F | <ul> <li>▶ Prime mover exhaust streams</li> <li>✓ Gas turbine</li> <li>✓ Reciprocating engine</li> <li>▶ Heat-treating furnaces</li> <li>▶ Ovens</li> <li>✓ Drying</li> <li>✓ Baking</li> <li>✓ Curing</li> <li>▶ Cement kilns</li> </ul>                                                                                                                             | <ul> <li>Medium power-generation efficiencies</li> <li>Chemical and mechanical contaminants (some streams such as cement kilns)</li> </ul>                                                                                        | <ul> <li>Waste heat boilers and steam turbines (&gt;260 °C / 500 °F)</li> <li>→ Organic Rankine cycle (&lt;430 °C / 800 °F)</li> <li>→ Kalina cycle (&lt;540 °C / 1,000 °F)</li> </ul> |
| LOW<br><260 °C / 500 °F                       | <ul> <li>Boilers</li> <li>Ethylene furnaces</li> <li>Steam condensate</li> <li>Cooling Water</li> <li>Furnace doors</li> <li>Annealing furnaces</li> <li>Air compressors</li> <li>IC engines</li> <li>Refrigeration condensers</li> <li>Low-temperature ovens</li> <li>Hot process liquids or solids</li> </ul>                                                       | <ul> <li>Energy contained in numerous small sources</li> <li>Low power-generation efficiencies</li> <li>Recovery of combustion streams limited due to acid concentration if temperatures reduced below 120 °C / 250 °F</li> </ul> | <ul> <li>&gt; Organic Rankine cycle         (&gt;150 °C / 300 °F gaseous streams,         80 °C / 175 °F liquid streams)</li> <li>&gt; Kalina cycle (95 °C / 200 °F)</li> </ul>        |





WTE (Waste to Energy) Application Fields



| Field of Application      |            | Temperature Range      |                           |                          |
|---------------------------|------------|------------------------|---------------------------|--------------------------|
|                           |            | Low (>100 °C / 212 °F) | Medium (<200 °C / 392 °F) | High (>2100 °C / 392 °F) |
| Geothermal                |            | 01-                    | 20 MW                     | >                        |
| Waste Heat                | WASTE HEAT |                        | 0.2 – 20 MW               |                          |
| Biomass & Waste to Energy | BIOMASS    |                        |                           | 0.2 – 15 MW              |
| CSP Solar                 | *          |                        |                           | 0.2 – 15 MW              |





ENERGY SAVING POTENTIALS - Technologies & Measures (samples), SAMPLE DISTRICT HEATING & COOLING SYSTEM





















generally in the range **200 kW – 10 MW electrical output** e.g. recovery at Elbe – Feralpi ≤720 kWh/tls / pay-back 5-6 years Average consumption EAF:

- 360 400 kWh/tls (hot DRI)
- <400 550 kWh/tls (cold DRI, scrap)



ENERGY SAVING POTENTIALS - Technologies & Measures (samples), SAMPLE STEAM GENERATION (simplified scheme)



















ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Iron & Steel Production life cycle (simplified)





ENERGY SAVING POTENTIALS - Technologies & Measures (samples), Iron & Steel Production life cycle (simplified)



Possibilities of by-products usage in the metals industry (different kinds of raw material),

- ✓ road construction and building industries (ballast/fill materials, steel slag asphalt),
- ✓ binder material and production of cement, agriculture and animal husbandry (soil improvers and horse riding surfaces),
- ✓ electronics industry (ferrites),
- ✓ chemical industries (different kinds of raw materials and fertilizer products);









| Enterprise                                                           | Investment                                                                                                                           | Savings                                                                                                                                                                                                                                                                              | Source             |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Tenaris Dalmine Plant                                                | ■ EUR 3.8 mill. (2007-2008) — e.g. high efficiency & frequency controlled motors, energy waste, heat recovery, CHP power plant, etc. | <ul> <li>14% reduction in electricity</li> <li>6% reduction in natural gas</li> <li>(JUN08-JUL09 vs JUN05-JUL06)</li> </ul>                                                                                                                                                          | www.worldsteel.org |
| Essar Hazira Plant                                                   | <ul><li>Investment in HBI Cooling<br/>system</li></ul>                                                                               | <ul> <li>Water consumption reduction 0.68<br/>m³/ton MAY08 compared to 0.92<br/>³/ton FEB08, savings: 250,000 USD</li> </ul>                                                                                                                                                         | www.worldsteel.org |
| HADEED                                                               | ■ Upgrading natural gas quality                                                                                                      | <ul> <li>Specific consumption savings: 0.97</li> <li>MBTU/MT equivalent to 8.48% of original gas consumption</li> </ul>                                                                                                                                                              | www.worldsteel.org |
| ThyssenKrupp German HRM                                              | <ul> <li>Advanced burner technology,<br/>secondary de-dusting systems</li> </ul>                                                     | ■ Specific dust & NOx emission reduction from 1985 to 2005 (2 kg/ton → 0.5 kg/ton crude steel produced)                                                                                                                                                                              | www.worldsteel.org |
| Usage of slag in different industries like road making, cement, etc. |                                                                                                                                      | <ul> <li>Production cost of 01 ton Portland<br/>Cement generates about 1.2 ton<br/>CO<sub>2</sub>, usage of BF slag containing 50<br/>wt% GGBS generates 0.54 ton CO<sub>2</sub></li> <li>Market price BF granulated slag: 75-79USD/ton; 65 EUR/m³, BOF 38-40<br/>EUR/ton</li> </ul> | www.euroslag.com   |





ENERGY SAVING POTENTIALS - Technologies & Measures, ISO 50001 Energy Management System Model (Plan – Do – Check – Act)



ENERGY SAVING POTENTIALS - Technologies & Measures, Basic program energy saving audit & implementation





In cooperation with



University of Natural Resources and Life Sciences, Vienna





**ENERGY SAVING POTENTIALS - Technologies & Measures** 



# Independent, reliable & trustable consultancy service for

### **YOUR**

# long-term success





